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We consider the effect of steady, three-dimensional cellular convective fields impressed
upon the moving front of a dilute binary alloy in directional solidification. The flows
have length scales longer than the characteristic lengths of the morphological in-
stability. A Floquet problem with multiple degrees of freedom in space governs the
interfacial dynamics and determines the morphological patterns and marginal stability
boundaries. In the cases of weak flows the induced patterns are superpositions of rolls
modulated by the forced flows. When the flows are strong, the instability becomes
spatially localized and confined at inward flow-stagnation regions on the front. Nu-
merical computations and the WKB method are used to solve the eigenvalue problems,
showing various localized states depending on the structures of the imposed flows.

1. Introduction
A homogeneous state may bifurcate into spatial patterns when a control parameter

of a physical system is raised above a critical value. A linear stability analysis that
probes the evolution of infinitesimal disturbances to the uniform state delivers the
stability threshold and spatial–temporal scales of the cellular structures. Often, this
ideal scenario is compromised by a slowly varying parameter in the background, or
perturbed by an external forcing that has a length scale long compared to that of
the intrinsic cellular structure. In this situation multi-scale interaction can lead to
spatially localized patterns, whose distribution is well-correlated with the long-scale
variation. We present here a case in directional solidification of a binary alloy coupled
with convection.

The study of forced flows over solidifying interfaces aims at examining the induced
morphological patterns; the results have implications for the design of microstructures
of materials by employing fluid motions. This goal has motivated many authors to
investigate the flow-modified morphologies with prescribed flow fields. For example,
Coriell, McFadden & Boisvert (1984) examined the effect of plane Couette flow;
Forth & Wheeler (1989), Hobbs & Metzener (1991), and Schultze & Davis (1994)
considered the case of asymptotic suction profile; Brattkus & Davis (1988) studied
the instability induced by a stagnation-point flow (see also Davis 1993 for a review).
For those cases the imposed flows redistribute solute in the melt, which modifies the
stability boundary from the pure solidification problem. The morphological patterns
are altered as well, depending on the imposed flow profiles.

In the present study we examine the morphological instabilities of solidification
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fronts advancing into pre-existing cellular convective fields. The motions are three-
dimensional, with prescribed spatial scales and magnitudes. The analogous two-
dimensional flow problem has been studied previously (Chen & Davis 1999), with a
conclusion that the flow promotes three-dimensional instability and produces localized
patterns at the inward stagnation points of the cellular flow. Those stagnation regions
are the positions where the interfacial flow converges and inhomogeneities accumulate.
Here, we extend the previous results to three-dimensional flow systems. The flow fields
near the free surface are then characterized by inward stagnation points or lines, which
consequently result in a local focus- or ridge-like morphology, respectively. New types
of morphological patterns are predicted and insights gained in our previous work
allow us to deconstruct this more complex situation. The materials so produced
possess a type of ‘composite’ structure induced by the cellular convective fields.

Problems of similar mathematical structures can be found in other physical systems,
which include Bénard convection with a non-uniform heating (Pal & Kelly 1979; Wal-
ton 1982), band theory of solids (Connor et al. 1980), premixed flames in inhomoge-
neous flows (Class, Bühler & Davis 1998), and sedimentation in meandering channels
(Eckhaus & Kuske 1997; Schielen & Doelman 1998). Most studies have considered
parametric-excitation systems with a single degree of freedom (e.g. Mathieu’s equa-
tion). By contrast, in the present study the resulting dynamics have Floquet structures
with multiple degrees of freedom in space. Thus, in addition to the study of crystal-
growth morphologies, our system may serve as a model problem to understand the
influence of long-scale forcing and the effect of the geometry in other physical contexts.

In the following sections we start the formulation by incorporating the flow into the
morphological model. The eigenvalue systems are solved to obtain the flow-induced
patterns and stability threshold. A WKB theory gives the asymptotic structures of
the localized morphologies. A brief summary closes our presentation.

2. Flow-modified interfacial dynamics
During the directional solidification of a binary alloy, the planar solid–liquid

interface becomes unstable when the pulling speed is greater than a critical value,
at which point cellular patterns form on a length scale 2π/βc determined by the
material properties and operating conditions. This instability is driven by the adverse
concentration gradient created by solute rejection at the solid–liquid interface. The
linear stability analysis of Mullins & Sekerka (1964) gives the neutral stability curve
and the minimum in the graph of morphological parameter M versus wavenumber
β. The morphological number M is proportional to the local concentration gradient
and, hence, the pulling speed.

Near the minimum (Mc, βc) we can approximate the dispersion relation by the
equation

σ + (β2
c − β2)2 = M −Mc (2.1)

when employing appropriate physical length and time scales. Here, σ represents the
growth rate. Equation (2.1) is written as a function of β2, reflecting the rotational
symmetry of the planar solution. It also indicates the exchange of stability at the
critical point, which was demonstrated by Wollkind & Segel (1970). In terms of the
interfacial shape disturbance h(x, t), where x = (x, y), the dispersion relation can be
reformulated as

∂h

∂t
+ (β2

c + ∇2)2h = (M −Mc)h. (2.2)
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When appropriate nonlinearities are appended (see, for example, Cross & Hohenberg
1993), this governs the modelling of the nonlinear interfacial behaviour in directional
solidification.

We consider the morphological instability perturbed by a pre-existing cellular
convective field. The flow strength is denoted by a parameter δ and flow spatial
scale by 2π/α. In practice, such flows may arise from hydrodynamic or solutal-
buoyancy instability; the flows usually have much longer length scales than that of
the morphological cells (Coriell et al. 1980). Therefore, we shall consider the case of
α � βc in our analysis. When the flow strength δ and the perturbed morphological
number m = M−Mc are small, instability of the moving front is a perturbation from
the pure solidification problem, and the interfacial dynamics can be modelled by

∂h

∂t
+ (1 + ∇2)2h+ δu · ∇h = (m+ δχw)h, (2.3)

in which we have neglected the higher-order terms and set βc = 1 without loss
of generality, since only α/βc matters. The transport in the z-direction (normal to
the free surface) has been factored out so that the velocity components u and w
are projections with respect to the average crystal front. Equation (2.3) is a Mullins–
Sekerka problem with a forced convection near the marginal stability limit. The vector
field u(αx) represents flow components tangential to the crystal plane, convecting
disturbances downstream. The normal component w(αx) modifies the morphological
number through a scaling parameter χ > 1, which measures the boundary-layer
thickness of the flow. The parameter χ has been computed for the case of roll-like
convective field (Chen & Davis 1999), in which the corresponding slow-variable
dynamics had been obtained through the solute conservation law and momentum
transport equation using multiple-scale analysis. Equation (2.3) can then be derived
by regrouping the slow- and fast-variable dynamics in the linear regime. Here, we
shall look at the influence of more complicated flows and employ (2.3) to depict
the flow-modified problem in general. The flow strength δ is proportional to the
magnitude of velocity in the far field and 0 < α� 1. By setting δ = 0 the formulation
has an eigensolution eiβ·x+σt, with a dispersion relation given by (2.1).

We shall consider a class of cellular convective fields whose flow components satisfy
the following equations:

∇2w + α2w = 0, (2.4)

α2u = ∇w. (2.5)

This type of fluid motion is motivated by the cellular-flow profiles near the onset
of hydrodynamic or buoyancy instability (Chandrasekhar 1961). The connection
between the two formulae is simply kinematic and required by the conservation of
mass. The previously studied roll flow (Chen & Davis 1999) for example, has the
profile w = α cos(αx) and u = (− sin αx, 0), which is a special case in this category.
For three-dimensional flow systems, the flow fields can be expressed as compositions
of rolls with wave vectors kj of different orientations:

w(αx, αy) =
α

N

N∑
j=1

cos(αkj · x), |kj | = 1, (2.6)

and the corresponding u is derived from (2.5). The flow field is arranged such that
|u| = O(1) and the origin is located at one of the convergent flow-stagnation points.
The normal-flow component, w = O(α), is further amplified by the factor χ in the
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interfacial dynamics. Examples in addition to the roll flow are square and hexagonal
patterns which may occur in directional solidification experiments,

roll: N = 1, k1 = (1, 0); (2.7)

square: N = 2, k1 = (1, 0), k2 = (0, 1); (2.8)

hexagon: N = 3, k1 = (1, 0), k2 = (−1/2,
√

3/2), k3 = (−1/2,−√3/2). (2.9)

Equation (2.3) depicts the early-stage development of an infinitesimal disturbance
until the effects of the nonlinear terms set in. Its solutions predict the stability
boundary and possible morphological patterns for the flow-modified problem. For
convenience we shall study the normal mode: h(x, y, t) 7→ eiωth(x, y), and consider the
neutrally stable solutions only (ω real). The deduced system,

(1 + ∇2)2h+ δu · ∇h− δχw h = (m− iω)h, (2.10)

is a two-dimensional Floquet problem in which the periodic coefficients have slow
spatial variations inherited from the cellular-flow profiles. We are interested in the
spatially bounded solutions (i.e. eigensolutions), including solutions that are com-
mensurate (harmonic–subharmonic) and incommensurate (aperiodic) with the flow
periodicity. Their structures are investigated in different parameter regimes.

3. Resonance condition
When the flow is relatively weak, we express the solution as a regular expansion of

δ,

h(x; δ) = h0(x) + δh1(x) + δ2h2(x) + · · · , (3.1)

and exclude cases in which small divisors may appear. We investigate its uniformity
by substituting (3.1) into the linear problem (2.10), and solving for hj(x, y) at each
order of δ. Results for the leading-order system are

h0 = eiβ·x + c.c., (1− β2)2 = m, (3.2)

which corresponds to the cellular solution of the classical Mullins–Sekerka instability;
c.c. represents complex conjugate. Here, we have absorbed iω into m, and assumed
that |m| is not as small as δ so that it is retained in the O(1) equation. At this order
the solutions are superposition of rolls defined by (3.2).

At O(δ) we obtain

(1 + ∇2)2h1 − mh1 = χwh0 − u · ∇h0, (3.3)

in which the right-hand side shows interaction between the flow and morphological
cells that produces perturbation terms like ei(β±αkj )·x. To this order, the flow and cells
resonate provided that the oscillatory functions are in the null space of the Mullins–
Sekerka operator; that is, if (1 − |β ± αkj |2)2 = m. This condition has to be solved
together with (3.2) and the resulting formula for β is

β+ = (1− 1
4
α2 ±√m)1/2 k⊥j + 1

2
αkj ,

β− = (1− 1
4
α2 ±√m)1/2 k⊥j − 1

2
αkj ,

}
j = 1 · · ·N, (3.4)

where k⊥j is a unit vector orthogonal to kj . We shall view (3.4) as the primary
resonance condition for it is deduced from the first-order interaction. In this condition
the interfacial patterns are composed of short-scale rolls with the structures defined
by (3.2) and directions of the wavevectors defined by (3.4). For the roll convection
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(2.7) where the flow field is defined by a single wavevector k1, the induced cellular
morphology consists of longitudinal rolls. For the square and hexagonal flows (2.8)
and (2.9), compositions of rolls responding to the multiple flow vectors kj will lead to
short-scale square and hexagon cells in the morphologies, respectively. For all of the
cases, each set of rolls has grooves aligned and modulated by a subharmonic (period
π/α) function in the flow directions kj .

The induced patterns quickly become complicated as more terms are considered in
the expansion. Higher-order interactions between the flows and morphological cells
further generate perturbation functions ei(β+αK )·x, where K is a linear combination of
flow vectors kj ,

K =
∑
j

pjkj , (3.5)

and pj are integers. Thus, by comparing the perturbation structure with that of
the O(1) equation, the higher-order resonance condition can be readily written by
replacing the vector kj with K in (3.4). The deduced condition then suggests that
in the small-δ neighbourhood resonant patterns are given by superpositions of rolls
with the wave vectors oriented perpendicularly to K , along which appear secondary
long-scale structures in response to the imposed flows. In higher-order resonance
situations the roll convection (2.7) still produces modulated longitudinal rolls, since
K remains one-dimensional. Nevertheless, in the cases of square and hexagonal flows
the composed K can point in almost every direction along the crystal plane, which
implies less restriction on the directions of β, and that the flows are too weak to
organize the patterns in this regime.

It is desirable to examine the lower bound of the resonance set because it demarcates
the marginal stability boundary for the flow-modified morphologies. When the flow
is weak this can be achieved by also performing a perturbation analysis but allowing
m to approach zero. The solutions are again expressed by (3.1) with an additional
ansatz, m = δm1 + δ2m2 + · · ·, substituted into the expansion. An analysis shows that
there are multiple branches of solutions bifurcating from the origin (m, δ) = 0; two
classes are identified. The first has the wavenumber written as (3.4) but with m = 0
in the formula. Removing the resonance terms and solving for mj we arrive at two
branches of solutions, referred to branch A:

A1: h ∼ ei (1−α2/4)1/2k⊥j ·x cos(αkj · x/2) + c.c.,

m ∼ − 1
2
(αδ/N)(χ− 1

2
);

}
(3.6)

A2: h ∼ ei (1−α2/4)1/2k⊥j ·x sin(αkj · x/2) + c.c.,

m ∼ 1
2
(αδ/N)(χ− 1

2
).

}
(3.7)

This class of solutions has subharmonic modulations.
In the second category solutions are harmonic with the flows: h = eik⊥j ·xF(k ·ξ)+c.c.,

where ξ = αx are the long-scale coordinates. We find that in the limit |δ/α3| � 1,
solutions of this branch can be expressed by asymptotic formula (3.8); call it branch B:

B: F ∼ 1 + [δ/(α3/N)] χ cos(kj · ξ),

m/α4 ∼ − 1
2
[δ/(α3/N)]2χ(χ− 1).

}
(3.8)

The marginal stability curves are then determined by the competition between the
two sets of solutions, A and B: whichever defines the minimum of m. Comparing
the two categories we see that branch-A solutions give the lower bound of the res-
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δ = O (α3)

A

B

δ

m

Figure 1. Sketch of the branching structure of the resonant solutions.
Shaded regions represent unstable states.

onance solutions and, therefore, form the marginal stability boundaries mc as δ → 0.
Branch B solutions in this weak-flow regime have higher morphological numbers,
hence are less dangerous. The asymptotic formulae thus indicate that since mc < 0 the
imposed flows promote morphological instability. It is the flow component normal
to the free surface that is responsible for the destabilization (χ > 1). The induced
patterns are superpositions of (3.6) and (3.7), forming modulated cells in response to
orientations of kj . Figure 1 sketches this bifurcation structure near the origin of the
(m, δ)-plane.

Further investigation shows that the above result is adequate only in a narrow
regime |δ/α3| � 1, where the flows are extremely weak. As the flows get stronger,
solutions that continue from branch B become dominant and comprise the marginal
stability curves (see figure 1). This switch-over occurs when δ/α3 is not small so that
the regular expansion (3.8) is inappropriate. The behaviour can be understood by
using the roll-flow case as an example, in which we let h = eiyF(ξ) + c.c., ξ = αx in
(2.10) and the function F(ξ) satisfies

−α
3

δ

d4F

dξ4
+
( m
αδ

+ χ cos ξ
)
F + sin ξ

dF

dξ
= 0. (3.9)

It is clear that when |δ/α3| � 1, the fourth-order term has a small coefficient so that
the solutions are non-uniform in this limit. Chen & Davis (1999) have studied this
equation and shown that the critical morphological number in this regime is

B (continuation) : m ∼ −|αδ|(χ− 1), |δ/α3| � 1. (3.10)

The solutions have exponentially localized structures instead of weak modulations of
morphological rolls. Thus for χ > 1 the marginal stability curve mc switches from
branch A to branch B (continuation) at δ = O(α3).

4. Harmonic balance and WKB approximation
For general δ and m, we seek eigensolutions of (2.10) by the method of harmonic

balance. We first employ the flow scale ξ = (ξ, η) and rewrite the linear eigenvalue
problem (2.10) in a standard form: Lh = λh, in which the linear operator L and
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Figure 2. Marginal stability boundaries computed by the harmonic-balance method.
χ = 10 and α = 0.125 for each case.

eigenvalue λ are defined as

L = (1 + α2∇2
ξ)

2 + αδu · ∇ξ − δχw, (4.1)

λ = m− iω, (4.2)

and ∇ξ = (∂ξ, ∂η). In this formulation we have viewed the morphological number m
and the frequency ω, respectively, as the real and imaginary parts of the eigenvalue λ.
Solutions that are commensurate with the flows are expressed as harmonic expansions
in both the ξ- and η-directions, corresponding to the cellular flow patterns (2.7) to
(2.9),

roll & square: h(ξ, η) =
∑
p

∑
q

Apq exp[ i ( 1
2
pξ, 1

2
qη)], (4.3)

hexagon: h(ξ, η) =
∑
p

∑
q

Apq exp[ i ( 1
4
pξ, 1

4

√
3qη)]. (4.4)

Here, p and q are integers, with even values of (p, q) representing the harmonic
solutions and odd values the subharmonic (period-doubling) solutions. Similar types
of expansions have been widely used to solve parametric-excitation systems of a single
degree of freedom, and the convergence has also been studied extensively (e.g. see
Karpeshina 1997 and the references therein).

Formally, we substitute expansions (4.3) and (4.4) into the linear eigenvalue problem,
collect coefficients of like terms and obtain a set of relations connecting the amplitudes
Apq: ∑

i

∑
j

LijpqAij = λApq. (4.5)

This system is solved numerically by a standard eigenvalue solver (Lapack 1999) with
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(b) Square (c) Hexagon(a) Roll

δ > 0

δ < 0

Figure 3. Localized patterns produced by the cellular convective fields. The patterns are expected
to be seen when |δ/α3| � 1. Here, arrows indicate flow directions near the crystal plane. The gray
scale represents the height of the interfacial patterns.

chosen parameters (δ, α, χ) and upper–lower bounds of summing indices. We perform
this calculation for the flow patterns listed. Of particular interest is the identification
of the minimal Re(λ) = mc, which represents the critical morphological number for
the flow-modified systems.

Figure 2 summarizes the marginal stability boundaries obtained from the numerical
calculations. It is seen that the imposed flows are destabilizing (mc < 0) in general,
which is in agreement with the analysis in the previous section. In the small-(δ, α)
parameter regime those marginal stability solutions are stationary in time (ω = 0), in
contrast with the travelling wave solutions (ω 6= 0) in the two-dimensional morphol-
ogy (Chen & Davis 1999). The roll-like convection has a stronger destabilizing effect
than the square and hexagonal flows for a given pair of flow parameters. By inspecting
the numerical results we observe that all of the cellular flows perturb the stability
boundaries weakly: given a small but finite δ the computed mc approaches zero as
α→ 0. Those minima follow branch A near the origin in the (m, δ)-plane, but quickly
deviate from the curves when the value of δ/α3 increases, showing the branching
structure sketched in figure 1. Solutions of the roll flow then agree with the branch B
(continuation); the square and hexagonal flow cases also exhibit similar behaviour.

Our computations thus show that, though the stability boundaries are only weakly
perturbed, the morphological structures can be strongly modified. Figure 3 plots
the interfacial patterns of those marginally stable solutions in the strong-flow limit,
|δ/α3| � 1. In this regime the flows produce spatially localized morphologies, in which
interfacial disturbances are confined to the convergent flow-stagnation regions. When
the local flow field converges to a point the induced pattern shows a focus-like local
structure, while if the flow converges to a line the local pattern becomes ridge-like.
For roll and square convective fields the localized patterns form arrays and clusters
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on the crystal plane, respectively (figures 3a and 3b). Switching parity of the flows
(δ → −δ) is equivalent to a translation of coordinates, producing the same type of
morphology and the same stability boundaries. In contrast, a hexagonal convection
does not possess this symmetry. An inward hexagonal flow (δ > 0) produces localized
foci at the centres of hexagonal flow cells, whereas an outward flow (δ < 0) produces
localized ridges at the rims of each hexagon (figure 3c). This asymmetry is also
indicated in the plot of the marginal stability curve (figure 2), which shows that the
inward hexagonal flow has a stronger destabilizing effect than the outward case. In
summary, in this strong-flow regime structures of the localized patterns are determined
by the local flow fields. Their arrangements on the front follow the spatial variation
of the cellular flow profiles.

Away from the marginal stability limits the eigensolutions also exhibit localized
structures. They are higher-order modes corresponding to further phase distortion or
symmetry breaking of the local patterns. For example, in the case of inward hexagonal
flows, broken-symmetry resulting in ‘flower’-like patterns is observed at the convergent
stagnation points; a few of these are shown in figure 4. Those higher-order solutions
have eigenvalues larger but not far from the marginal stability limit mc, due to the
long flow periods (small α). Thus, in practice, when the morphological number m is
raised into the unstable regime many such modes will be excited together with the
marginal stability solution. In this case nonlinear competition between those localized
states will determine the actual pattern seen in experiment.

We investigate the asymptotic structures of those localized solutions by looking
at the local form of (2.10) near the convergent flow-stagnation regions. For the
focus-type pattern we expand the flow functions near the origin, so that the flow
contributions are written as

δu · ∇h ∼ −1

2
αδ

(
ξ
∂

∂ξ
+ η

∂

∂η

)
h,

δχwh ∼ αδχ [1 + O(ξ2 + η2)]h,

 (4.6)

where |ξ| and |η| are small. This formula suggests that we seek a shape function of
the form: h 7→ einθh(r) + c.c., satisfying (2.10) with the flow contributions replaced by
the local formula (4.6). Here, r2 = ξ2 + η2, θ is the phase angle, and n an integer.
In cylindrical coordinates the interfacial morphology near the convergent stagnation
point is written[

1 +
α2

r

d

dr

(
r

d

dr

)
− n2α2

r2

]2

h− 1

2
αδr

dh

dr
= (λ+ αδχ) h. (4.7)

Equation (4.7) governs the local morphologies for both square and inward hexagon
flows. We note the close proximity of the two marginal stability curves in this strong-
flow regime (figure 2), which implies that the induced morphologies of the two flows
can be approximated by the same equation locally.

It is readily seen that, in the no-flow situation, the formulation has an eigensolution
written in terms of a Bessel function

h(r) = Jn(r/α) ∼
(

2α

πr

)1/2

cos(r/α− 1
2
nπ− 1

4
π) (4.8)

at the onset of pure Mullins–Sekerka instability (λ = 0), in which the fast oscillatory
function represents short-scale morphological cells. In the presence of the flows we
express h(r) as a function consisting of the short-scale cells and a WKB-type envelope
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Figure 4. Higher-order localized states produced by the inward hexagonal flow fields.

function

h(r) = r−1/2 eir/α e[S(r)/ε] + c.c., (4.9)

in which ε� 1 is a scaling parameter. We find a locally exponential envelope when
choosing ε = (α2/δ)1/2, and the function S(r) satisfies (to the leading order)(

dS

dr

)2

+
i

8
r = 0, (4.10)

which results in two branches of solutions: S = ± 1
6
(1− i)r3/2. Suppressing the growing

mode we arrive at an approximation for the structure of a focus:

h ∝ r−1/2eir/α exp[− 1
6
(1− i)(δ/α2)1/2r3/2] + c.c. (4.11)

The solution is appropriate in the intermediate regime, (α2/δ)1/3 � r � 1, where both
(4.6) and (4.10) are valid.

Similarly, we write the ridge-like localization as short-scale morphological cells plus
an envelope function: h = eiη/α einαηF(ξ)+c.c., where n = O(1). For the roll convection
this decomposition is straightforward and F(ξ) satisfies

−α
3

δ

(
d2

dξ2
+ 2n+ n2α2

)2

F +

(
λ

αδ
+ χ

)
F + ξ

dF

dξ
= 0. (4.12)

The case of n = 0 is the local form of (3.9). By employing a WKB-type approximation
and selecting the decaying branch, we obtain

F ∝ exp[−(δ/α3)1/3( 1
8

√
3− 3

8

√
3 i ) ξ4/3], (δ/α)3 � 1, (4.13)

which is valid in the regime (α3/δ)1/4 � ξ � 1.
For the case of outward hexagonal flow (figure 3c, δ < 0) the analysis is complicated

by the non-simple flow along the rims. Nevertheless, the ridge-like morphology
suggests that equation (4.12), with an adjusted flow magnitude, may serve as an
approximation to the local pattern and hence determines the scaling of the envelope.
The (ξ, η) coordinates here will have to be rearranged such that they are measured
from the centre of a ridge, respectively parallel and orthogonal to the converging
flow direction. Also, near the corners where three neighbouring ridges meet, the local
flow converges to a point and produces focus-type patterns; equation (4.7) may be
appropriate to describe the local structures. Thus, the morphology along the rims can
then be constructed by patching the ridge and focus patterns. Detailed matching has
not been carried out.
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1 mm

Figure 5. Direct observation from above of the localized morphology induced by thermo-solutal-
driven convection. Patterned area indicates morphological instability and corresponds to convergent
flow-stagnation regions near the crystal plane. A transient state of solidification 67 minutes after
the growth of succinonitrile–0.2 wt% acetone alloy with V = 1.5 mm s−1 and thermal gradient
G = 30 C◦ cm−1. Photo from Jamgotchian et al. (2000).

5. Summary
Our investigation, extending previous analysis on the two-dimensional convection

case (Chen & Davis 1999), focuses on the induced morphologies in three-dimensional
flow systems. The interfacial dynamics is based on the classical Mullins–Sekerka
problem in directional solidification, but includes the effect of fluid motion in the
model equation. The imposed flows have spatial wavenumber α and strength pa-
rameter δ, which control the perturbation from the pure morphological instability.
The dynamical system has a multi-dimensional, parametric-excitation structure. Lin-
ear theory reveals the flow-induced morphologies and marginal stability boundaries.
WKB analysis delivers the scalings of the localized states. The spatial localization
is due to solute redistribution by the fluid motions. The imposed flows convect in-
homogeneities to convergent flow-stagnation regions and promote instability locally.
Length scales of the local patterns are determined by the balance between interfa-
cial flow and surface-tension forces. The flows strongly control the patterns when
|δ/α3| � 1.

We analyse the effect of spatially periodic flows on growing crystal fronts. Since
the local flow profiles in the vicinity of stagnation regions can be classified and
analysed, the insight gained from the current analysis on the cellular flows presents
a way to understand the flow-induced morphologies in complex flows. We note that
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an early experiment performed by Hämäläinen (1967) has shown that morphological
instability occurs first at the corners of convection cells. Experiments by Jamgotchian
et al. (2000) have also demonstrated localized interfacial morphologies in the flow
convergent regions even when the flows are not spatially periodic; see figure 5.
Various physical systems with similar mathematical structures are mentioned in §1,
which, when extended to multi-dimensional cases, may show results that qualitatively
agree with ours. In Class’s study on cellular flame combustion (Class et al. 1998;
Class 2000, personal communication), for example, he has observed localized flame
patterns similar to figures 3 and 4, though the physics that drives the instability is
distinctively different from that in the present case.

This work was supported by NASA, Microgravity Sciences and Application Pro-
grams. We thank Dr H. Jamgotchian for providing figure 5.
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Höbbs, A. K. & Metzener, P. 1991 J. Cryst. Growth 112, 539.

Jamgotchian, H., Bergeon, N., Benielli, D., Voge, Ph., & Billia, B. 2000 Convection-induced mi-
crostructures and microstructure-induced convection in directional solidification. EUROMECH
Colloquium 408: Interactive Dynamics of Convection and Solidification, March 2000, Chamonix,
France.

Karpeshina, Y. E. 1997 Perturbation Theory for the Schrödinger Operator with a Periodic Potential.
Springer

Lapack 1999 Lapack User’s Guide, 3rd Edn. SIAM

Mullins, W. W. & Sekerka, R. F. 1964 J. Appl. Phys. 35, 444.

Pal, D. & Kelly, R. E. 1979 ASME Paper 79-HT-109.

Schulze, T. P. & Davis, S. H. 1994 J. Cryst. Growth 143, 317.

Schielen, R. & Doelman, A. 1998 SIAM J. Appl. Maths 58, 1901.

Walton, I. C. 1982 Q. J. Mech. Appl. Maths 35, 33.

Wollkind, D. J. & Segel, L. A. 1970 Phil. Trans. R. Soc. Lond. A 268, 351.


